ST EDWARD'S OXFORD

13+ SCHOLARSHIP EXAMINATION 2013

MATHEMATICS
 Paper 1

1 hour

Name: \qquad

There are 60 marks available.
NO Calculators are allowed.
Write all answers, including your workings, in this booklet.

1. (a) Circle all of the fractions below which are smaller than $\frac{\mathbf{1}}{\mathbf{9}}$
$\frac{1}{10}$
$\frac{4}{9}$
$\frac{1}{2}$
$\frac{1}{100}$
$\frac{1}{8}$
(b) Complete the sentences below:
$\frac{1}{9}$ is half of \qquad
$\frac{1}{9}$ is two thirds of \qquad

There are \qquad ninths in $6 \frac{1}{3}$
(c) Put these numbers in order, smallest to biggest. Some may have the same value. Insert the symbols $<$ or $=$ between successive terms in your list as appropriate.

$$
\frac{5}{4}, \quad 0.54, \quad 1.25, \quad \frac{27}{50}
$$

2. The ancient Egyptians used fractions, but only unit fractions.
$\frac{1}{3}, \frac{1}{8}, \frac{1}{5}$ are all examples of unit fractions; the numerator must be 1 and the denominator is an integer greater than 1.

For $\frac{3}{4}$, they wrote the sum $\frac{1}{2}+\frac{1}{4}$
(a) For what fraction did they write the sum $\frac{1}{2}+\frac{1}{5}$? Show your working.
(b) They wrote $\frac{9}{20}$ as the sum of two unit fractions. One of them was $\frac{1}{4}$

What was the other? You must show your working.
3. a) Solve this equation: $75+2 t=100-2 t$

2 marks
b) Simplify this expression: $\quad 7(5 y-3)-10+2(3 y-5)-3(5-7 y)$

3 marks
c) Factorise this expression: $\quad 9 x^{2} y-3 x y^{2}+3 x y$
4. (a) A rectangle is 3 a units long and 5 b units wide. Write a simplified expression for the area and the perimeter of this rectangle.

Area: \qquad

Perimeter: \qquad
(b) A different rectangle has area $12 a^{2}$ and perimeter 14a. What are the dimensions of this rectangle?

Dimensions: \qquad by \qquad

1 mark

5. a) What is 55% of 60 ?
b) What is 125% of 24 ?
c) What is 30% of 40% of 50 ?
d) Which calculation below decreases a number by 30% - circle the correct one.
$\times 70$
$\div 30$
$\times 1.3$
$\times 0.7$
-30
6. Ian started to walk from A to B, but gave up 6 miles after he had passed the half way mark. He was then 5 miles from B. How far is it from A to B ?
7. This drawing is made up of 9 equal squares. The perimeter is 128 cm . Find its area.

8. A window is made with two pieces of glass - one is semi-circular, the other is square.

The area of the square is $1 \mathrm{~m}^{2}$. What is the approximate area of the semi-circle? Give your answer in cm^{2} to the nearest whole number.
9. (a) Estimate the answer to $\frac{8.62+22.1}{5.23}$

Give your answer to $\mathbf{1}$ significant figure.
(b) Estimate the answer to $\frac{28.6 \times 24.4}{5.67 \times 4.02}$

1 mark
10. Complete the sentences:
(i) $2 \mathrm{~m} 12 \mathrm{~cm}=$ \qquad mm
(ii) $4 \mathrm{~h} 12 \mathrm{~min}=$ \qquad hours
(iii) $20 \mathrm{~km} / \mathrm{h}=$ \qquad m / s
(iv) $40 \mathrm{~cm}^{3}=$ \qquad m^{3}
11. (a) Each of these calculations has the same answer, 60. Fill in the gaps:

$2.4 \times 25=\mathbf{6 0}$	$\mathbf{6 0 0} \div \mathbf{1 0}=\mathbf{6 0}$
$0.24 \times \ldots \ldots \ldots=60$	$6 \div \ldots \ldots \ldots \ldots=60$
$2400 \times \ldots \ldots \ldots=60$	$0.06 \div \ldots \ldots \ldots=60$

12. (a) Find the values of a and b when $\boldsymbol{p}=\mathbf{1 0}$
$a=\frac{3 p^{3}}{2}$

$$
a=\ldots .
$$

$b=\frac{2 p^{2}(p-3)}{7 p}$
\qquad
$b=$
1 mark
(b) Simplify this expression as fully as possible:
$\frac{3 c d^{2}}{5 c d}$
13. Calculate the size of the angle marked α :

14. X, Y and Z share some sweets between them in the ratio 2:3:5. Z receives 60 more sweets than X . Find the total number of sweets shared between the three boys.
15. To cover a distance of 10 km , Jacob runs some of the way at $15 \mathrm{~km} / \mathrm{hr}$, and walks the rest of the way at $5 \mathrm{~km} / \mathrm{hr}$. His total journey time was 1 hour. How far did Jacob run?
16. David puts five cards face down on a table. All have the same design on the back - on the other side, one shows a circle, two show squares, and two show triangles. He turns two cards over. What is the probability that at least one of the cards is a square?

